株式会社キャンパスクリエイト

お客様の課題解決を
産学官連携・オープンイノベーションで実践する広域TLO

TEL 042-490-5734

(調布オフィス)
〒182-8585 東京都調布市調布ヶ丘1-5-1
国立大学法人電気通信大学産学官連携センター内

おもてなし規格認証2019 KAIKA Awards 特選紹介事例を受賞

開放特許情報

ライセンス可能な特許情報を掲載しています。

特許検索

技術分野を選択
キーワードを入力

特許情報

発明の名称 屈折率補正法、距離測定法及び距離測定装置
技術分野 ものづくり, ナノテクノロジー
出願番号 特願2015-220789
概要

【要約】
【課題】空気屈折率の補正を行う光学系のスペースを抑え、且つ光学的距離の測定精度を高めることが可能な屈折率補正法を提供する。
【解決手段】互いに異なる周波数で且つ所定の周波数間隔で分布するスペクトルを二以上含む光周波数コムを測定領域中で伝搬させる工程と、二以上の前記スペクトルの搬送波を前記測定領域中で伝搬させた際の第一光学的距離を測定し、二以上の前記スペクトルの包絡線を構成する波束を前記測定領域中で伝搬させた際の第二光学的距離を測定する工程と、前記第一光学的距離と前記第二光学的距離との第一光学的距離差を得る工程と、前記第一光学的距離に基づいて算出される第一屈折率又は前記第二光学的距離に基づいて算出される第二屈折率を前記第一光学的距離差に基づいて補正する工程と、を備える。

【特許請求の範囲】
【請求項1】
 測定領域中を第一速度で伝搬する第一波と、前記第一波の中心波長と同一の中心波長であり、且つ前記測定領域中を前記第一速度とは異なる第二速度で移動する第二波と、を同一の光源から前記測定領域中に出射する工程と、前記第一波を前記測定領域中で伝搬させた際の第一光学的距離と、前記第二波を前記測定領域中で伝搬させた際の第二光学的距離とをそれぞれ測定する工程と、前記第一光学的距離と前記第二光学的距離との光学的距離差を得る工程と、前記第一光学的距離に基づいて算出される第一屈折率又は前記第二光学的距離に基づいて算出される第二屈折率を前記光学的距離差に基づいて補正する工程と、を備える屈折率補正法。
【請求項2】
 前記光源とは、互いに異なる周波数で且つ所定の周波数間隔で分布するスペクトルを二以上含む第一光周波数コムを発する第一光周波数コム光源であり、前記第一波とは、二以上の前記スペクトルの搬送波であり、前記第二波とは、二以上の前記スペクトルの包絡線を構成する波束であって、前記第一光学的距離と前記第二光学的距離とをそれぞれ測定する工程において、前記搬送波の位相差屈折率に基づいて前記第一光学的距離を測定し、前記波束の群屈折率に基づいて前記第二光学的距離を測定する請求項1に記載の屈折率補正法。
【請求項3】
 前記第一波の中心波長と前記第二波の中心波長との何れとも異なる中心波長の第三波を前記測定領域中で伝搬させる工程と、前記第三波を前記測定領域中で伝搬させた際の第三光学的距離を測定する工程と、前記第一光学的距離又は前記第二光学的距離と前記第三光学的距離との第二光学的距離差を得る工程と、をさらに備え、前記第一屈折率又は前記第二屈折率を補正する工程に替えて、前記第一屈折率又は前記第二屈折率を前記第一光学的距離差及び前記第二光学的距離差に基づいて補正する工程と、を備える請求項1に記載の屈折率補正法。
【請求項4】
 前記第三波とは、互いに異なる周波数で且つ所定の周波数間隔で分布するスペクトルを二以上含み、且つ前記第一波の中心波長と前記第二波の中心波長との何れとも異なる中心波長を有する第二光周波数コムの二以上の前記スペクトルの搬送波及び前記第二光周波数コムの二以上の前記スペクトルの包絡線を構成する波束のうち少なくとも一方である請求項3に記載の屈折率補正法。
【請求項5】
 請求項1又は請求項2に記載の屈折率補正法を用いた距離測定法であって、前記第一光学的距離差に基づいて前記測定領域内に存在する測定対象の形状を示す幾何学的距離を算出する工程を備える距離測定法。
【請求項6】
 請求項3又は請求項4に記載の屈折率補正法を用いた距離測定法であって、前記第一光学的距離差及び前記第二光学的距離差に基づいて前記測定領域内に存在する測定対象の形状を示す幾何学的距離を算出する工程を備える距離測定法。
【請求項7】
 測定領域中を第一速度で伝搬する第一波と、前記第一波の中心波長と同一の中心波長であり、且つ前記測定領域中を前記第一速度とは異なる第二速度で移動する第二波と、を出射する光源と、前記光源から出射した前記第一波同士を干渉させる第一干渉部と、前記光源から出射した前記第二波同士を干渉させる第二干渉部と、前記第一干渉部において干渉した前記第一波同士の第一干渉縞を取得し、取得した前記第一干渉縞の間隔に基づいて前記第一光学的距離を測定する第一光学的距離測定部と、前記第二干渉部において干渉した前記第二波同士の第二干渉縞を取得し、取得した前記第二干渉縞の間隔に基づいて前記第二光学的距離を測定する第二光学的距離測定部と、前記第一光学的距離と前記第二光学的距離との差を得る光学的距離差算出部と、前記第一光学的距離と前記第二光学的距離との差に基づいて前記測定領域内に存在する測定対象の形状を示す幾何学的距離を算出する幾何学的距離算出部と、を備える距離測定装置。

発明の名称 微細流路を用いた熱交換器の沸騰熱伝達性能シミュレーション装置、およびプログラム
技術分野 ものづくり, ナノテクノロジー
出願番号 特願2015-150851
概要

【要約】微細流路内の沸騰熱伝達率を精度高く算出することができるシミュレーション装置を提供する。

【特許請求の範囲】
【請求項1】
熱流束q、質量速度G、クオリティx、飽和圧力Psat、使用する冷媒、冷媒の流動方向を基に物性値を算出する物性値算出モジュールと、前記物性値算出モジュールで算出された物性値および冷媒の流動方向の入力情報を取得して、液膜蒸発熱伝達αlfで伝わる熱流束qlfと、核沸騰熱伝達αnbで伝わる熱流束qnb と強制対流熱伝達αfcで伝わる熱流束qfcと、伝熱管内壁温と冷媒の温度差ΔTsatを基に入力条件qを満たすΔTsatを繰り返し計算する繰り返し計算モジュールと、前記繰り返し計算モジュールで算出された数値を、α=αlf+αnb+αfcに代入して微細流路内沸騰熱伝達率αを算出する微細流路内沸騰熱伝達率算出モジュールと、を備えることを特徴とする微細流路を用いた熱交換器の沸騰熱伝達性能シミュレーション装置。
【請求項2】
熱流束q、質量速度G、クオリティx、飽和圧力Psat、使用する冷媒、冷媒の流動方向を入力するステップと、前記入力された前記情報を基に計算に必要な冷媒の物性値を算出するステップと、各熱伝達成分αlf、αnb、αfcで伝わるそれぞれの熱流束qlf、qnb、qfc の合計値qが前記ステップで入力した条件を満たすまで、繰り返し計算により、伝熱管内壁温と冷媒の温度差ΔTsatを算出するステップと、前記ステップで得られたΔTsatを基に、微細流路内の沸騰熱伝達率αを算出するステップ
と、を備えることを特徴とする微細流路を用いた熱交換器の沸騰熱伝達性能シミュレーションプログラム。

発明の名称 固体高分子燃料電池及びケーブル供給機構
技術分野 ものづくり, 新エネルギー/省エネルギー, ナノテクノロジー
出願番号 特願2015-90104
概要

【要約】固体高分子形燃料電池をX線ラミノグラフィーにより計測する方法の提供。

【特許請求の範囲】
【請求項1】
 X線ラミノグラフィー法による計測を可能とする固体高分子形燃料電池であって、膜/電極膜接合体と、前記膜/電極膜接合体の第1の側に設けられた第1の流路板と、前記膜/電極膜接合体の第2の側に設けられた第2の流路板と、前記第1の流路板の第1の側に設けられ、第1の透過窓を有する第1のセパレーターと、前記第2の流路板の第2の側に設けられ、第2の透過窓を有する第2のセパレーターとを含み、前記第1及び第2の透過窓は、その一方を通って入射されたX線であって、前記膜/電極膜接合体の主面に対して所定角度以上を有するものについて、前記膜/電極膜接合体及び前記第1及び第2の流路板を介してその他方を通って出射させるように構成された固体高分子形燃料電池。
【請求項2】
 前記第1及び第2の透過窓は、これら第1及び第2の透過窓を通り、前記膜/電極膜接合体の主面に垂直な一つの軸について、前記一つの軸を対称軸とし、前記膜/電極膜接合体の主面と前記所定角度をなす母線を有する円錐により形成された傾斜面を有する請求項1に記載の固体高分子形燃料電池。
【請求項3】
 前記第1及び第2の流路板は、非晶質な素材を含む請求項2に記載の固体高分子形燃料電池。
【請求項4】
 前記素材は、放射線耐性を有する請求項3に記載の固体高分子形燃料電池。
【請求項5】
 前記素材は、ガラス状炭素を含む請求項3又は4に記載の固体高分子形燃料電池。
【請求項6】
 前記第1及び第2のセパレーターは、軽量かつ耐食性に優れた素材を含む請求項2から5のいずれかに記載の固体高分子形燃料電池。
【請求項7】
 前記第1及び第2のセパレーターは、金メッキ処理アルミニウムを含む請求項6に記載の固体高分子形燃料電池。
【請求項8】
 前記膜/電極膜接合体と前記第1の流路板との間に設けられた第1のガスケットと、前記膜/電極膜接合体と前記第2の流路板との間に設けられた第2のガスケットとをさらに含む請求項2から7のいずれかに記載の固体高分子形燃料電池。
【請求項9】
 前記膜/電極膜接合体に熱風を供給する加熱する熱風ヒーターをさらに含む請求項2から7のいずれかに記載の固体高分子形燃料電池。
【請求項10】
 前記第1及び第2の透過窓を通して前記膜/電極膜接合体に赤外線を照射して加熱するハロゲンヒーターをさらに含む請求項2から9のいずれかに記載の固体高分子形燃料電池。
【請求項11】
 前記第1及び第2のセパレーターは、前記一つの軸について略回転対称な外周部を有する請求項2から10のいずれかに記載の固体高分子形燃料電池。
【請求項12】
 前記膜/電極膜接合体並びに前記第1及び第2の流路板は、前記略回転対称な外周部から内側にある請求項11に記載の固体高分子形燃料電池。
【請求項13】
 前記第1及び第2のセパレーターは、前記略回転対称な外周部にケーブルの接続部位を有する請求項11又は12に記載の固体高分子形燃料電池。
【請求項14】
 前記ケーブルは、電線及びガス配管を含む請求項13に記載の固体高分子形燃料電池。
(以下省略)

発明の名称 太陽電池
技術分野 新エネルギー/省エネルギー, ナノテクノロジー
出願番号 特願2014-175843
概要

【要約】
【課題】
 効率を改善したヘテロ接合型の太陽電池を提供する。
【解決手段】
 太陽電池は、光透過性を有する基板と、前記基板の光入射面とは反対側の面に形成される導電膜と、前記導電膜に積層される正孔ブロック層と、前記正孔ブロック層に積層される、pnヘテロ接合型の光電変換層と、前記光電変換層に積層される電極とを含み、前記光電変換層は、前記正孔ブロック層の光入射側とは反対側の面から前記光電変換層の厚さ方向に沿って伸延する複数のn型ロッドと、前記n型ロッドを被覆する被覆層と、前記複数のn型ロッド同士の間、及び、前記複数のn型ロッドと前記電極との間に形成されるp型量子ドット層とを有し、前記n型ロッドは、ZnO、In2O3、又はSnO2製であり、前記被覆層は、TiO2、Y2O3、Al2O3、ZnS、又はSiO2製であり、前記p型量子ドット層は、PbS、PbSe、又はCuInS2製である。

【特許請求の範囲】
【請求項1】
 光透過性を有する基板と、前記基板の光入射面とは反対側の面に形成される導電膜と、前記導電膜に積層される正孔ブロック層と、前記正孔ブロック層に積層される、pnヘテロ接合型の光電変換層と、前記光電変換層に積層される電極とを含み、前記光電変換層は、前記正孔ブロック層の光入射側とは反対側の面から前記光電変換層の厚さ方向に沿って伸延する複数のn型ロッドと、前記n型ロッドを被覆する被覆層と、前記複数のn型ロッド同士の間、及び、前記複数のn型ロッドと前記電極との間に形成されるp型量子ドット層とを有し、前記n型ロッドは、ZnO、In2O3、又はSnO2製であり、前記被覆層は、TiO2、Y2O3、Al2O3、ZnS、又はSiO2製であり、前記p型量子ドット層は、PbS、PbSe、又はCuInS2製である、太陽電池。
【請求項2】
 前記被覆層の厚さは、10nm以下である、請求項1記載の太陽電池。

発明の名称 単結晶ダイヤモンドの製造方法、単結晶ダイヤモンド、単結晶ダイヤモンド基板の製造方法、単結晶ダイヤモンド基板及び半導体デバイス
技術分野 ものづくり, ナノテクノロジー
出願番号 特願2014-175926
概要

【要約】
【課題】本発明は、熱膨張係数の異なる材料の基板を用いた場合であっても、悪影響を生じることなく、大面積且つ高品質の単結晶ダイヤモンド膜を形成できる、単結晶ダイヤモンドの製造方法を提供することを目的とする。
【解決手段】上記課題を解決するべく、本発明は、基板20上に複数の原子状Siを分散吸着させ、前記原子状Siを発生中心としたダイヤモンド結晶核10を形成する工程と、前記基板20上に、前記ダイヤモンド結晶核10からなるダイヤモンド結晶核郡パターン11を形成する工程と、前記ダイヤモンド結晶核郡パターン11を形成したダイヤモンド結晶核10から、ダイヤモンド結晶を選択的に成長させることで、単結晶ダイヤモンド30を形成する工程と、を備えることを特徴とする。

【特許請求の範囲】
【請求項1】
 基板上に複数の配向した微小単結晶ダイヤモンドを成長する工程と、該微小単結晶ダイヤモンドからなるダイヤモンド結晶核群を選択的に成長及び一体化させる工程と、を備えることを特徴とする単結晶ダイヤモンドの製造方法。
【請求項2】
 基板上に複数の原子状Siを分散吸着させ、少なくとも炭素を含有するプラズマ中で前記基板にバイアス電圧を印加することで、前記基板上に、前記原子状Siを発生中心とし配向したたダイヤモンド結晶核を形成する工程と、前記基板上に、前記ダイヤモンド結晶核からなるダイヤモンド結晶核郡パターンを形成する工程と、前記パターンを形成したダイヤモンド結晶核郡から、ダイヤモンド結晶を選択的に成長及び一体化させることで、単結晶ダイヤモンドを形成する工程と、を備えることを特徴とする単結晶ダイヤモンドの製造方法。
【請求項3】
 前記ダイヤモンド結晶の選択的な成長は、横方向エピタキシャル成長によって行うことを特徴とする請求項1又は2に記載の単結晶ダイヤモンドの製造方法。
【請求項4】
 前記ダイヤモンド結晶核郡パターンの形成は、前記基板上に複数の前記ダイヤモンド結晶核を形成した後、該ダイヤモンド結晶核の一部を除去することによって行うことを特徴とする請求項2又は3に記載の単結晶ダイヤモンドの製造方法。
【請求項5】
 前記基板として、SOI基板を用いることを特徴とする請求項1~4のいずれか1項に記載の単結晶ダイヤモンドの製造方法。
【請求項6】
 請求項1~5のいずれか1項に記載の単結晶ダイヤモンドの製造方法によって得られた単結晶ダイヤモンド。
【請求項7】
 請求項6に記載の単結晶ダイヤモンドを同一基板上に複数配置し、それぞれ選択的に成長及び一体化させることを特徴とする単結晶ダイヤモンド基板の製造方法。
【請求項8】
 前記基板として、SOI基板を用いることを特徴とする請求項7に記載の単結晶ダイヤモンド基板の製造方法。
【請求項9】
 請求項7又は8に記載の単結晶ダイヤモンド基板の製造方法によって得られた単結晶ダイヤモンド基板。
【請求項10】
 請求項6に記載の単結晶ダイヤモンド又は請求項9に記載の単結晶ダイヤモンド基板を用いた半導体デバイス。
【請求項11】
 ダイヤモンド単結晶を縦型のハイパワーデバイス活性領域として用い、基板上には信号制御及び前記パワーデバイスのドライブ回路を集積することを特徴とする半導体デバイス。

発明の名称 光学測定装置及び光学測定方法
技術分野 ものづくり, ナノテクノロジー
出願番号 特願2014-159837
概要

【課題】 サブトラクション超解像法で機械的要素を低減または排除して、信頼性の高い超解像イメージングを実現する。
【解決手段】 光源からの光を2つに分割し、一方のビームをそのままガウスビームとして用いて第1の変調周波数で変調し、他方のビームを第2の変調周波数で変調するとともにドーナツビームにモード変換し、第1の変調周波数で変調されたガウスビームと、第2の変調周変調で変調されたドーナツビームを重畳して試料を照射し、試料からの蛍光のうち、ガウスビームの照射による第1の蛍光成分とドーナツビームの照射による第2の蛍光成分を、前記第1の変調周波数と前記第2の変調周波数のそれぞれで同時に復調し、第1の蛍光成分と第2の蛍光成分の差分を算出することで迅速かつ信頼性の高い超高解像の光学測定を実現する。

【特許請求の範囲】
【請求項1】
 光源と、
 前記光源から出射される光を第1ビームと第2ビームに分割するビームスプリッタと、前記第1ビームを第1の変調周波数で変調する第1の光変調器と、前記第2ビームを第2の変調周波数で変調する第2の光変調器と、前記第2ビームを、焦点面でドーナツ型の強度分布を有するドーナツモードのビームに変換するモード変換素子と、前記第1の変調周波数で変調された前記第1ビームと、前記第2の変調周変調で変調され、かつ前記ドーナツモードに変換された前記第2ビームを重畳して試料に導く光学素子と、前記試料からの蛍光を前記第1の変調周波数で復調する第1のロックイン増幅器と、前記試料からの蛍光を前記第2の変調周波数で復調する第2のロックイン増幅器と、前記第1のロックイン増幅器で復調された蛍光成分と、前記第2のロックイン増幅器で復調された蛍光成分の差分を測定結果として算出する演算装置と、を有することを特徴とする光学測定装置。
【請求項2】
 前記第1及び第2の光変調器は電気光学変調器であり、前記モード変換器は、前記第2の光変調器の後段に配置されることを特徴とする請求項1に記載の光学測定装置。
【請求項3】
 前記第1及び第2の光変調器は光チョッパーであり、前記モード変換器は、前記第2の光変調器の前段に挿入されることを特徴とする請求項1に記載の光学測定装置。
【請求項4】
 前記試料からの蛍光を検出する蛍光検出器、をさらに有し、前記蛍光検出器で検出された蛍光が、前記第1のロックイン増幅器と前記第2のロックイン増幅器に入力されることを特徴とする請求項1~3のいずれか1項に記載の光学測定装置。
【請求項5】
 前記試料を1次元的、2次元的、または3次元的に駆動する駆動メカニズム、をさらに有し、前記演算装置は、前記第1の蛍光成分と前記第2の蛍光成分の差分を前記重畳されたビームのスポット位置ごとに算出することを特徴とする請求項1~4のいずれか1項に記載の光学測定装置。
【請求項6】
 光源からの光を第1ビームと第2ビームに分割し、前記第1ビームを第1の変調周波数で変調し、前記第2ビームを第2の変調周波数で変調するとともに、焦点面でドーナツ型の強度分布を有するドーナツモードのビームに変換し、前記第1の変調周波数で変調された前記第1ビームと、前記第2の変調周変調で変調され、かつ前記ドーナツモードに変換された前記第2ビームを重畳して試料を照射し、前記試料からの蛍光のうち、前記第1ビームにより励起され放出された第1の蛍光成分を前記第1の変調周波数で復調し、前記試料からの蛍光のうち、前記ドーナツモードのビームに変換された前記第2ビームにより励起され放出された第2の蛍光成分を前記第2の変調周波数で復調し、前記第1の蛍光成分と前記第2の蛍光成分の差分を算出する、工程を有することを特徴とする光学測定方法。
【請求項7】
 前記第1の変調周波数による変調と、前記第2の変調周波数による変調を電気光学変調器によって行い、前記第2ビームを前記第2の変調周波数で変調した後に、前記ドーナツモードのビームに変換する、ことを特徴とする請求項6に記載の光学測定方法。
【請求項8】
 前記第1の変調周波数による変調と、前記第2の変調周波数による変調を光チョッパーによって行い、前記第2ビームを前記ドーナツモードのビームに変換した後に、前記第2の変調周波数で変調する、ことを特徴とする請求項6に記載の光学測定方法。
【請求項9】
 前記試料からの蛍光を検出し、前記検出された蛍光を、第1のロックイン増幅器と第2のロックイン増幅器に入力し、前記第1のロックイン増幅器で前記第1の蛍光成分を復調し、前記第2のロックイン増幅器で前記第2の蛍光成分を復調する、ことを特徴とする請求6~8のいずれか1項に記載の光学測定方法。
(以下省略)