株式会社キャンパスクリエイト

お客様の課題解決を
産学官連携・オープンイノベーションで実践する広域TLO

TEL 042-490-5734

(調布オフィス)
〒182-8585 東京都調布市調布ヶ丘1-5-1
国立大学法人電気通信大学産学官連携センター内

おもてなし規格認証2019 KAIKA Awards 特選紹介事例を受賞

開放特許情報

ライセンス可能な特許情報を掲載しています。

特許検索

技術分野を選択
キーワードを入力

特許情報

発明の名称 新規複素環式化合物及びその塩、並びに、発光基質組成物
技術分野 環境/有機化学/無機化学
出願番号 特願2014-189314
概要

【要約】pHが中性付近の緩衝液への溶解性に優れ、ホタル生物発光系における発光基質として利用可能な新規化合物の提供。

【発明の詳細な説明】
 本発明は、新規複素環式化合物及びその塩、並びに、発光基質組成物に関し、特には、pHが中性付近の緩衝液への溶解性に優れ、ホタル生物発光系における発光基質として利用可能な複素環式化合物に関するものである。
 生物発光系の中でも、ホタルの発光系は、発光効率に優れた系として知られている。該ホタルの発光系においては、発光基質であるホタルルシフェリンが、発光酵素のホタルルシフェラーゼと、アデノシン三リン酸(ATP)及びマグネシウムイオン(Mg2+)の存在下、励起状態のオキシルシフェリンに変換され、該オキシルシフェリンが基底状態へと失活する際に波長が約560nmの黄緑色の蛍光が発せられる。
 また、昨今、かかるホタルの発光系の発光基質の類似体として、多彩な発光波長を実現する化合物が合成されている。例えば、下記特許文献1には、ホタルルシフェリンのフェノール性水酸基を2級又は3級アミノ基で置換したルシフェリン誘導体が開示されている。また、下記特許文献2及び3には、ホタルルシフェリンと類似の分子構造を有するルシフェラーゼの発光基質が開示されている。
 これらのホタルルシフェリン類似体の中でも、長波長の光を発する発光基質は、長波長光は生体内での透過率が高いため、生体内深部の病巣を可視化するための標識材料として有望であり、例えば、和光純薬工業株式会社から商品名「アカルミネ」として、長波長光を発するホタルルシフェリン類似体が市販されている。
しかしながら、上記ホタル発光系の発光基質類似体は、多彩な発光波長を実現できるものの、水溶性が低く、特に、生体内深部の可視化に有用な長波長光を発する発光基質で顕著である。一般に、マウスやラット等の実験動物の生体内への投与においては、発光基質は1~15mg/ml程度の溶解度を有することが必要であるが、上記の長波長光を発する発光基質は、水への溶解度が約0.1mg/mlであり、実用性に問題が有った。
 これに対して、本発明者らは、特定の分子構造を有し、ホタル生物発光系における発光基質として機能する水に難溶性の発光基質を、ハロゲン化水素で塩化することで、ホタル生物発光系における発光能を保持しつつ、水溶性が大幅に向上することを見出している。
 しかしながら、上記水に難溶性の発光基質のハロゲン化水素塩は、生体内への投与のために、pHが中性付近の緩衝液に添加すると、水に難溶性の発光基質が析出してしまうという問題があった。また、上記水に難溶性の発光基質のハロゲン化水素塩をpHが約2の酸性溶液として、実験動物の生体内へ投与すると、生体内の細胞が適切に活動するためにpHが7.4前後で調節されている血液(細胞外液)のバランスが崩れる等の問題があり、実験動物への投与は可能であるが好ましくない。
 そこで、本発明の目的は、上記従来技術の問題を解決し、pHが中性付近の緩衝液への溶解性に優れ、ホタル生物発光系における発光基質として利用可能な新規化合物を提供することにある。本発明者らは、上記目的を達成するために鋭意検討した結果、特定の複素環を有する化合物が、ホタル生物発光系における発光基質として機能する上、pHが中性付近の緩衝液への溶解性に優れることを見出し、本発明を完成させるに至った。

発明の名称 収音装置および収音方法、並びにプログラム
技術分野 IT
出願番号 特願2014-39642
概要

【要約】
【課題】所望音源からの音波をより確実に抽出して音声認識装置に出力する収音装置を提供する。
【解決手段】収音装置11は、所望音源から到来する音波を観測する複数個のマイクロホンが直線的に配置された第1のマイクロホンアレー121と、第1のマイクロホンアレーに対して平行に、所望音源から見て第1のマイクロホンアレーよりも手前側に配置され、所望音源から到来する音波を観測する複数個のマイクロホンが直線的に配置された第2のマイクロホンアレーと122を備え、複数の第1の音波信号に含まれる所望音源からの音波と複数の第2の音波信号に含まれる所望音源からの音波との関係性、および、複数の第1の音波信号に含まれる所望音源以外の音源からの音波と複数の第2の音波信号に含まれる所望音源以外の音源からの音波との関係性に基づいて、所望音源から到来する音波を抽出する。

【特許請求の範囲】
【請求項1】
 直線的に配置された所定個数のマイクロホンにより、所望音源から到来する音波と前記所望音源以外の音源から到来する音波とを観測して得られる所定数の第1の音波信号を出力する第1のマイクロホンアレーと、前記第1のマイクロホンアレーに対して略平行に、前記所望音源から見て前記第1のマイクロホンアレーよりも手前側に配置され、直線的に配置された所定個数のマイクロホンにより、前記所望音源から到来する音波と前記所望音源以外の音源から到来する音波とを観測して得られる所定数の第2の音波信号を出力する第2のマイクロホンアレーと、所定数の前記第1の音波信号に含まれる前記所望音源からの音波の成分と所定数の前記第2の音波信号に含まれる前記所望音源からの音波の成分との関係性、および、所定数の前記第1の音波信号に含まれる前記所望音源以外の音源からの音波の成分と所定数の前記第2の音波信号に含まれる前記所望音源以外の音源からの音波の成分との関係性に基づいて、前記所望音源から到来する音波を抽出する抽出処理部とを備える収音装置。
【請求項2】
 前記第1および第2のマイクロホンアレーの各マイクロホンでは、前記所望音源からの音波が球面状に広がりながら伝播する球面波として観測されるとともに、前記所望音源以外の音源からの音波が平面的に伝搬する平面波として観測され、前記抽出処理部は、所定数の前記第1の音波信号に含まれる前記球面波の成分と前記第2の音波信号に含まれる前記球面波の成分との関係性、並びに、所定数の前記第1の音波信号に含まれる前記平面波の成分と前記第2の音波信号に含まれる前記平面波の成分との関係性に基づいて、前記球面波を抽出する請求項1に記載の収音装置。
【請求項3】
 前記抽出処理部は、所定数の前記第1の音波信号に対してそれぞれ高速フーリエ変換を施すことにより、所定数の第1の周波数領域信号を算出する所定個数の第1の高速フーリエ変換部と、所定数の前記第2の音波信号に対してそれぞれ高速フーリエ変換を施すことにより、所定数の第2の周波数領域信号を算出する所定個数の第2の高速フーリエ変換部と、所定数の前記第1の周波数領域信号に対して、前記第1のマイクロホンアレーの各マイクロホンの位置に従った空間フーリエ変換を施すことにより、前記第1のマイクロホン
アレーに到来する音波の波数を引数とする関数により表される第1の波数領域信号を求める第1の空間フーリエ変換部と、所定数の前記第2の周波数領域信号に対して、前記第2のマイクロホンアレーの各マイクロホンの位置に従った空間フーリエ変換を施すことにより、前記第2のマイクロホンアレーに到来する音波の波数を引数とする関数により表される第2の波数領域信号を求める第2の空間フーリエ変換部と、前記第1の波数領域信号および前記第2の波数領域信号から、前記第1の音波信号または前記第2の音波信号に含まれる前記球面波の成分が空間フーリエ変換された球面波成分波数領域信号を算出する球面波抽出処理部とを有する請求項2に記載の収音装置。
(以下省略)

発明の名称 最適波形の演算方法、プログラム及び最適波形演算装置
技術分野 IT
出願番号 特願2014-18907
概要

【要約】現実的な制約の下で、注入同期系における最適な入力信号を算出する具体的なアルゴリズムを提供する。

【特許請求の範囲】
【請求項1】
 発振器を有する注入同期系に注入する入力信号f(θ)の最適波形を演算する方法であって、前記発振器の位相感受関数Z(θ)(ここで、θは入力信号の位相)を取得する処理と
、前記入力信号f(θ)のpノルムのpの値を取得する処理と、前記入力信号f(θ)の1周期の平均値が一定である第1の制約条件(1/(2π)*〈f(θ)〉=0)(〈 〉は、θについての1周期にわたる積分)と、前記入力信号f(θ)のpノルムが一定である第2の制約条件(||f||p=M)(Mは正の定数)の下で、前記位相感受関数Z(θ)及び前記pの値に基づいて、前記入力信号f(θ)の最適波形fopt,pを、次式を用いて計算する処理と、を含む最適波形の演算方法。
   fopt,p=Msig[g(θ)](|g(θ)|/||g||q)1/p´
 ただし、g(θ)=Z(θ+Δφ)-Z(θ)+λ、Δφ=φ+-φ-、φ+は前記発振器の位相結合関数が極小となるときの発振波形と入力波形の位相差、φ-は前記発振器の位相結合関数が極小となるときの発振波形と入力波形の位相差、p-1+q-1=1、p´=p-1、λはラグランジュの未定乗数。
【請求項2】
 前記pの値が1<p<∞である場合には、関数Sp(Δφ,λ)=〈sig[g(θ)]|g(θ)|βZ´(θ+Δφ)〉(ただしβ=1/p´)と、関数Tp(Δφ,λ)=〈sig[g(θ)]|g(θ)|βZ´(θ+Δφ)〉の各々の交点の座標をすべて求め、複数の前記交点の座標(Δφ*,λ*)に対しヘッセ行列のへシアン|H(H)|を算出し、|H(H)|>0を満たす前記座標(Δφ*,λ*)を、最適値(Δφopt,λopt)であると判断して前記g(θ)の(Δφ,λ)に代入し、前記最適波形fopt,pを計算し、また、前記pの値がp=∞である場合には、関数Sp(Δφ,λ)=〈sig[g(θ)]Z´(θ+Δφ)〉と、関数Tp(Δφ,λ)=〈sig[g(θ)]〉の各々の交点の座標をすべて求め、複数の前記交点の座標(Δφ*,λ*)に対しヘッセ行列のへシアン|H(H)|を算出し、|H(H)|>0を満たす前記座標(Δφ*,λ*)を、最適値(Δφopt,λopt)であると判断して前記g(θ)の(Δφ,λ)に代入し、前記最適波形fopt,pを計算する請求項1に記載の最適波形の演算方法。
【請求項3】
 前記pの値がp=1である場合には、前記入力信号f(θ)の最適波形f*,1として、次式を用い、
   f*,1=-M[Δ(θ+Δφmax)-Δ(θ)]
 まず、位相結合関数Γ0(φ)=M[Z(φ+Δφ)-Z(φ)]の最大値と最小値の差が最大となるΔφを求め、求めたΔφを前記Δφmaxに代入し、前記最適波形f*,1を計算する 請求項1に記載の最適波形の演算方法。
(以下省略)

発明の名称 認証システム
技術分野 IT
出願番号 特願2015-560958
概要

【要約】
RFIDがRFIDリーダライタの直近に存在することを確認するために、RFIDが発するサイドチャネルを受信して、相関係数を算出する。相関係数が所定の閾値以上であれば、当該RFIDはRFIDリーダライタの直近に実在する真正のRFIDであることが判るので、リレー攻撃によるクラッキングを未然に防ぐことが可能になる。

【特許請求の範囲】
【請求項1】
 秘密鍵を保持し、外部から受信するチャレンジ値と前記秘密鍵を用いて応答値を算出する応答値演算部を有する被認証装置と、前記被認証装置に対し、前記チャレンジ値の送信及び前記応答値の受信を行うメインチャネル送受信回路と、前記応答値演算部が演算処理にて発する物理的変化をアナログのサイドチャネル信号として受信するサイドチャネル信号受信回路と、前記メインチャネル送受信回路から受信する前記応答値の真贋を検証すると共に、前記サイドチャネル信号受信回路から受信する前記サイドチャネル信号の真贋を検証する照合
処理部とを具備する、認証システム。
【請求項2】
 前記照合処理部は、前記サイドチャネル信号受信回路から受信した前記サイドチャネル信号をデジタルデータに変換した受信サイドチャネルデータと、前記秘密鍵と前記チャレンジ値を用いて演算処理にて生成したサイドチャネルモデルデータとの類似性を算出し、所定の閾値と比較する、請求項1に記載の認証システム。
【請求項3】
 前記照合処理部は、前記受信サイドチャネルデータと前記サイドチャネルモデルデータとの相関係数を算出する、請求項2に記載の認証システム。
【請求項4】
 更に、前記チャレンジ値を生成するチャレンジ値生成部と、前記秘密鍵と前記チャレンジ値を用いて演算処理にて前記サイドチャネルモデルデータを生成するサイドチャネルデータ生成部とを具備する、請求項3に記載の認証システム。
【請求項5】
 更に、
 前記被認証装置を一意に識別するID情報が格納されるID情報フィールドと、前記秘密鍵が格納される秘密鍵フィールドと、前記チャレンジ値が格納されるチャレンジ値フィールドと、前記秘密鍵と前記チャレンジ値を用いて演算処理にて生成される前記サイドチャネルモデルデータが格納されるサイドチャネルモデルデータフィールドと、該当レコードが使用済みであるか否かを示すフラグ情報が格納される使用済みフラグフィールドとを有する被認証装置テーブルとを具備し、前記照合処理部が認証処理において使用した前記被認証装置テーブルにおけるレコードの、前記使用済みフラグフィールドは、認証処理が遂行された際に使用済みである旨が記録される、請求項3に記載の認証システム。
【請求項6】
 秘密鍵を保持し、外部から受信するチャレンジ値と前記秘密鍵を用いて応答値を算出する応答値演算部を有する被認証装置と、前記被認証装置に対し、前記チャレンジ値の送信を行うメインチャネル送信回路と、前記応答値演算部が演算処理にて発する物理的変化をアナログのサイドチャネル信号として受信するサイドチャネル信号受信回路と、前記被認証装置を一意に識別するID情報が格納されるID情報フィールドと、前記秘密鍵が格納される秘密鍵フィールドとを有する被認証装置テーブルと、前記サイドチャネル信号受信回路から受信した前記サイドチャネル信号をデジタルデータに変換した受信サイドチャネルデータに対し、前記被認証装置テーブルの全レコードの前記秘密鍵フィールドに格納される秘密鍵と前記チャレンジ値を用いて演算処理にて生成したサイドチャネルモデルデータが最も類似するレコードを特定することで、前記被認証装置のID情報の特定と真贋を判定する照合処理部とを具備する、認証システム。
【請求項7】
 前記照合処理部は、前記受信サイドチャネルデータと前記サイドチャネルモデルデータとの相関係数を算出する、請求項6に記載の認証システム。

発明の名称 キャピラリーナノファイバー、検出システム及び検出方法
技術分野 ものづくり, ナノテクノロジー
出願番号 特願2013-262060
概要

【要約】
【課題】 キャピラリーを用いた極微量物質の検出技術において、より一層微量のサンプルで極微量物質を検出する。
【解決手段】 本発明のキャピラリーナノファイバー1は、ナノキャピラリー2と、第1ナノ光ファイバー4とを備える。ナノキャピラリー2は、内部に光透過性液体を流通させる貫通孔2aが形成された光透過性を有する第1管部11を含み、第1管部11の外径が、第1管部11を伝搬する光の波長以下のサイズである。また、第1ナノ光ファイバー4は、外径が第1管部11を伝搬する光の波長以下のサイズである第1光導波路を有し、第1光導波路の一部が第1管部11の一方の端部側のナノキャピラリー2内の所定位置に接続され、第1光導波路の一部を介してナノキャピラリー2を伝搬する光の一部を取り込む。

【特許請求の範囲】
【請求項1】
 内部に光透過性液体を流通させる貫通孔が形成された光透過性を有する第1管部を含み、該第1管部の外径が、該第1管部の貫通孔に該光透過性液体が流通した状態で該第1管部を伝搬する光の波長以下のサイズであるナノキャピラリーと、外径が前記第1管部を伝搬する前記光の波長以下のサイズである第1光導波路を有し、該第1光導波路の一部が前記第1管部の一方の端部側の前記ナノキャピラリー内の所定位置に接続され、該第1光導波路の一部を介して前記ナノキャピラリーを伝搬する前記光の一部を取り込む第1ナノ光ファイバーと、を備えるキャピラリーナノファイバー。
【請求項2】
 前記第1管部の貫通孔に該光透過性液体が流通した状態で前記第1管部を伝搬する光に対して所定の共振条件で共振作用を与える共振器を、さらに備える請求項1に記載のキャピラリーナノファイバー。
【請求項3】
 外径が前記第1管部を伝搬する前記光の波長以下のサイズである第2光導波路を有し、該第2光導波路の一部が前記第1管部の他方の端部側の前記ナノキャピラリー内の所定位
置に接続され、該第2光導波路の一部を介して前記ナノキャピラリーに前記光を入射する第2ナノ光ファイバーを、さらに備える請求項2に記載のキャピラリーナノファイバー。
【請求項4】
 前記共振器が、前記第1管部の表面に形成された所定周期の凹凸パターンにより構成される請求項2又は3に記載のキャピラリーナノファイバー。
【請求項5】
 前記共振器が、前記第1管部の表面に所定周期で交互に形成された第1の屈折率を有する第1領域と、該第1の屈折率とは異なる第2の屈折率を有する第2領域とにより構成さ
れる請求項2又は3に記載のキャピラリーナノファイバー。
【請求項6】
 光透過性を有する凹凸構造体で構成された前記共振器が表面に形成された光学的機能部材を、さらに備え、前記光学的機能部材が、前記ナノキャピラリーに対して、前記第1管部に前記光が伝搬した際に生成される近接場と前記凹凸構造体の一部とが重なるような位置に配置されている請求項2又は3に記載のキャピラリーナノファイバー。
【請求項7】
 前記第1管部の他方の端部側の前記第1管部内の所定位置に設けられ、前記第1管部の貫通孔に前記光透過性液体が流通した状態で前記第1管部を伝搬する光のうち、前記第1管部の他方の端部側に向かって伝搬する光成分の一部を反対方向に反射させる反射器を、さらに備え、前記第1管部を伝搬する光が、前記光透過性液体に含まれる、ラベリングされた所定の
極微量物質から発生した蛍光である請求項1に記載のキャピラリーナノファイバー。
【請求項8】
 前記ナノキャピラリーは、さらに、前記第1管部の前記光透過性液体の流出側に配置され、前記第1管部に形成された貫通孔の直径より大きな直径を有する貫通孔が内部に形成された光透過性を有する第2管部と、前記第1管部の前記光透過性液体の流入側に配置され、前記第1管部に形成された貫通孔の直径より大きな直径を有する貫通孔が内部に形成された光透過性を有する第3管部と、前記第1管部の前記光透過性液体の流出側端部と前記第2管部との間を接続し、前記第1管部の貫通孔と前記第2管部の貫通孔とを連通させる貫通孔が内部に形成され、且つ、外径が前記第1管部の前記光透過性液体の流出側端部から前記第2管部に向かって連続的に大きくなる第4管部と、前記第1管部の前記光透過性液体の流入側端部と前記第3管部との間を接続し、前記第1管部の貫通孔と前記第3管部の貫通孔とを連通させる貫通孔が内部に形成され、且つ、外径が前記第1管部の前記光透過性液体の流入側端部から前記第3管部に向かって連続的に大きくなる第5管部と、を有し、前記第1ナノ光ファイバーの前記第1光導波路の一部が、前記第4管部又は前記第5管部に接続されている請求項1~7のいずれか一項に記載のキャピラリーナノファイバ―。
(以下省略)