株式会社キャンパスクリエイト

お客様の課題解決を
産学官連携・オープンイノベーションで実践する広域TLO

TEL 042-490-5734

(調布オフィス)
〒182-8585 東京都調布市調布ヶ丘1-5-1
国立大学法人電気通信大学産学官連携センター内

おもてなし規格認証2019 KAIKA Awards 特選紹介事例を受賞

開放特許情報

ライセンス可能な特許情報を掲載しています。

特許検索

技術分野を選択
キーワードを入力

特許情報

発明の名称 光線剣
技術分野 IT, その他
出願番号 特願2005-36548
概要

【特許請求の範囲】

【請求項1】
光を照射する光源部を有し、人体の頭部に装着される装着部と、
反射部及びカバー部を有する光線剣本体とを備え、
前記反射部は、棒状で、前記光源部から照射された前記光を入射した方向に反射させ、
前記カバー部は、前記反射部を包周及び保護することを特徴とする光線剣装置。

【請求項2】
前記光線剣本体は、
前記カバー部が物体に接触した状態を検知する検知部と、
前記検知部が検知した事象を示す信号を送信する信号送信部と、
前記信号送信部が送信した前記信号を受信し、前記信号に基づいて効果音を送出する音声送出部
とを更に備えることを特徴とする請求項1に記載の光線剣装置。

【請求項3】
前記装着部は、前記光源部が照射する前記光を反射して、前記光線剣本体に前記光が照射されるように調整するハーフミラー部を更に備えることを特徴とする請求項1又は2に記載の光線剣装置。

【請求項4】
前記光線剣本体は、
前記反射部の端部側に配置され、前記人体の手部により把持可能に構成された把持部を備え、
前記反射部を当該反射部の長手方向軸を中心として前記把持部に対して回転させる回転手段、及び前記反射部を振動させる振動手段のうち、少なくともいずれか一方の手段を更に備えることを特徴とする請求項1乃至3のいずれか1項に記載の光線剣装置。

発明の名称 3次元位置入力装置
技術分野 IT
出願番号 特願2005-3118
概要

【特許請求の範囲】

【請求項1】
先端部分に光源を持ち、前記光源が出力する光の消滅及び出現を切り替える手段を有するポインティングデバイスと、
前記ポインティングデバイスの発する前記光が作る楕円または円の平面投影像を映す平面状の投影部と、
前記光源が出力する光の消滅及び出現を切り替える手段により前記光源の光を消滅させることで前記平面投影像が消えたときから一定時間、前記光の消滅及び出現をON/OFF情報として時間的に羅列するシグナルパターンを取得する信号取得部と、
前記シグナルパターンに基づいて複数の入力処理を識別する入力処理識別手段と、
予め登録された異なる複数のシグナルパターンの情報に対応した個別処理を実行する個別処理実行部と、
前記平面投影像を撮影する撮像機器と、
前記撮像機器により撮影された画像から前記平面投影像の特徴量を算出する特徴量算出手段と、
前記特徴量から前記ポインティングデバイスの3次元位置及び回転角を算出する位置算出手段とを具備し、
前記入力処理識別手段は、前記一定時間内に出現した前記シグナルパターンと前記予め登録された異なる複数のシグナルパターンとの一致を判断し、一致した場合は前記個別処理実行部が前記個別処理を実行し、一致しない場合は、前記信号取得部が新たにシグナルパターンを再取得し、前記新たなシグナルパターンと前記予め登録された異なる複数のシグナルパターンとの一致を判断することを特徴とする3次元位置入力装置。

【請求項2】
前記ポインティングデバイスは、光源の光軸を中心に円錐状の光線を発することを特徴とする請求項1に記載の3次元位置入力装置。

【請求項3】
前記ポインティングデバイスは、光源の光軸を通る光線を発生することを特徴とする請求項1または2に記載の3次元位置入力装置。

【請求項4】
前記ポインティングデバイスの発する平面投影像は、1箇所、欠けを生じ、前記位置算出手段は、前記欠けを利用して前記回転角を算出することを特徴とする請求項1乃至3のいずれか1項に記載の3次元位置入力装置。

【請求項5】
前記ポインティングデバイスは、楕円の周上または円周上に複数の光の点を発生し、前記位置算出手段は、前記複数の光の点のうち、ある光の点に着目して前記回転角を算出することを特徴とする請求項1に記載の3次元位置入力装置。

【請求項6】
前記撮像機器は、前記特徴量算出手段と前記位置算出手段とを具備することを特徴とする請求項1乃至5のいずれか1項に記載の3次元位置入力装置。

【請求項7】
前記平面状の投影部は、光を感知する機能を具備し、前記ポインティングデバイスの発する前記平面投影像もしくは前記複数の光の点の位置情報を読み取る平面状の光感知器であって、
この光感知器により読み取った前記平面投影像の特徴量もしくは前記複数の光の点の特徴量を算出する特徴量算出手段と、
前記特徴量から前記ポインティングデバイスの3次元位置及び回転角を算出する位置算出手段とを具備することを特徴とする請求項1乃至5のいずれか1項に記載の3次元位置入力装置。

【請求項8】
前記特徴量は、楕円の中心座標と焦点の座標と長軸の長さと短軸の長さと傾き、または円の中心座標と半径であることを特徴とする請求項1乃至8のいずれか1項に記載の3次元位置入力装置。

発明の名称 結晶粒微細化加工方法
技術分野 ものづくり
出願番号 特願2004-371534
概要

【特許請求の範囲】

【請求項1】
母相結晶中に第二相粒子が析出又は分散している金属材料加工素材を冷間雰囲気内で微小単位加工量だけひずみ加工する低ひずみ加工ステップと、
上記低ひずみ加工ステップに続いて、上記金属材料加工素材の加工組織を温間雰囲気内で回復させることにより、上記微小単位加工量に対応する加工ひずみを蓄積させる温間回復処理ステップと
を含む加工サイクルを、複数サイクル繰り返すことにより、上記金属材料加工素材の結晶粒を微細化加工し、
上記低ひずみ加工ステップにおける上記微小単位加工量は、直後の上記温間回復処理ステップにおける回復処理時に再結晶を発現させない大きさであり、
かつ上記温間回復処理ステップにおける加工熱処理温度は、動的あるいは静的再結晶が起らず回復のみが起る温度であり、
これにより上記複数サイクルにおける上記加工サイクルの微細化加工処理ごとに上記金属材料加工素材のひずみ量を蓄積加工する
ことを特徴とする結晶粒微細化加工方法。

【請求項2】
母相結晶中に第二相粒子が析出又は分散している金属材料加工素材を温間雰囲気内で微小単位加工量だけひずみ加工する低ひずみ加工ステップと、
上記低ひずみ加工ステップに続いて、上記金属材料加工素材の加工組織を温間雰囲気内で回復させることにより、上記微小単位加工量に対応する加工ひずみを蓄積させる温間回復処理ステップと
を含む加工サイクルを、複数サイクル繰り返すことにより、上記金属材料加工素材の結晶粒を微細化加工し、
上記低ひずみ加工ステップにおける上記微小単位加工量は、当該低ひずみ加工処理時及び直後の上記温間回復処理ステップにおける回復処理時に再結晶を発現させない大きさであり、
かつ上記温間回復処理ステップにおける加工熱処理温度は、動的あるいは静的再結晶が起らず回復のみが起る温度であり、
これにより上記複数サイクルにおける上記加工サイクルの微細化加工処理ごとに上記金属材料加工素材のひずみ量を蓄積加工する
ことを特徴とする結晶粒微細化加工方法。

【請求項3】
母相結晶中に第二相粒子が析出又は分散している金属材料加工素材を冷間雰囲気内で微小単位加工量だけひずみ加工する第1の低ひずみ加工ステップと、上記第1の低ひずみ加工ステップに続いて、上記金属材料加工素材の加工組織を温間雰囲気内で回復させることにより、上記微小単位加工量に対応する加工ひずみを蓄積させる第1の温間回復処理ステップとを含む第1の加工サイクルと、
上記金属材料加工素材を温間雰囲気内で微小単位加工量だけひずみ加工する第2の低ひずみ加工ステップと、上記第2の低ひずみ加工ステップに続いて、上記金属材料加工素材の加工組織を温間雰囲気内で回復させることにより、上記微小単位加工量に対応する加工ひずみを蓄積させる第2の温間回復処理ステップとを含む第2の加工サイクルと、
を含む加工サイクルを、複数サイクル繰り返すことにより、上記金属材料加工素材の結晶粒を微細化加工し、
上記第1及び第2の低ひずみ加工ステップにおける上記微小単位加工量は、当該第1及び第2の低ひずみ加工処理時及び直後の上記第1及び第2の温間回復処理ステップにおける回復処理時に再結晶を発現させない大きさであり、
かつ上記第1及び第2の温間回復処理ステップにおける加工熱処理温度は、動的あるいは静的再結晶が起らず回復のみが起る温度であり、
これにより上記複数サイクルにおける上記加工サイクルの微細化加工処理ごとに上記金属材料加工素材のひずみ量を蓄積加工する
ことを特徴とする結晶粒微細化加工方法。

【請求項4】
上記温間回復処理ステップの上記加工熱処理温度は、0.5Tm(融点Tmの半分の温度)以下である
ことを特徴とする請求項1ないし3のいずれかに記載の結晶粒微細化加工方法。

発明の名称 多軸鍛造用圧縮治具
技術分野 ものづくり
出願番号 特願2004-309822
概要

【特許請求の範囲】

【請求項1】
下部治具部に対して上部治具部を上下方向に移動させることによって圧縮室内の鍛造試料を圧縮加工する多軸鍛造用圧縮治具であって、
上記下部治具部は、上記上部治具部の上部アンビルを上方から挿脱動作される上記圧縮室と、上記圧縮室の下面に連通する位置から前端面に至るまでの間に形成された通路と、上記通路に挿脱される下部アンビルとを具え、
上記通路に上記下部アンビルを挿入することにより上記下部アンビルの上面によって上記圧縮室の下面を閉塞し、かつ上記上部治具部を上記下部治具部から離れる方向に移動させることにより上記上部アンビルを上記圧縮室から引き抜いた状態において、上記圧縮室に上記鍛造試料を入れた後上記上部治具部を上記下部治具部の方向に移動させることにより上記圧縮室に挿入された上記上部アンビルと上記下部アンビルと上記圧縮室の壁面との間に上記鍛造試料を第1の圧縮軸方向に圧縮加工し、
次に上記下部アンビルを上記通路から引き出した後、上記上部治具部を上記下部治具部の方向に移動させることにより上記上部アンビルによって上記加工後の鍛造試料を上記通路に突き落し、
次に当該加工後の鍛造試料を上記通路を介して外部に取り出した後当該通路に上記下部アンビルを挿入すると共に、上記上部治具部を上記下部治具部から離れる方向に移動させることにより上記上部アンビルを上記圧縮室から引き抜いた状態にし、これにより上記圧縮室に上記加工後の鍛造試料を入れることにより当該加工後の鍛造試料を上記第1の圧縮軸方向とは異なる第2の圧縮軸方向に圧縮加工できるようにする
ことを特徴とする多軸鍛造用圧縮治具。

【請求項2】
上記上部治具部及び上記下部治具部間に挿脱される圧縮高さ調節板を具え、
該圧縮高さ調節板は、上記上部アンビルによって上記鍛造試料を圧縮加工する際には上記上部治具部及び上記下部治具部間位置に挿入されると共に、当該圧縮加工された上記鍛造試料を上記圧縮室から上記通路に突き落す際には上記上部治具部及び上記下部治具部間位置から引き抜かれる
ことを特徴とする請求項1に記載の多軸鍛造用圧縮治具。

【請求項3】
下部治具部に対して上部治具部を移動させることによって圧縮室内の鍛造試料を圧縮加工する多軸鍛造用圧縮治具であって、
上記上部治具部は、第1の底面部の一端縁部に、圧縮上面と該圧縮上面に連接する圧縮側面とでなる圧縮凹所を有し、
上記下部治具部は、上記上部治具部の上記第1の底面部に対応する第2の底面部をもつ案内凹所を有し、
上記上部治具部を上記下部治具部から離れる方向に移動させることにより上記上部治具部を上記案内凹所から引き抜いた状態において、上記案内凹所のうち上記圧縮凹所に対応する位置に上記鍛造試料を入れた後、上記上部治具部を上記下部治具部の方向に移動させることにより、上記圧縮凹所の上記圧縮上面及び上記圧縮側面と、上記案内凹所の上記第2の底面部及び当該第2の底面部に連接する側面部とによって上記圧縮室を形成すると共に、上記圧縮凹所の上記圧縮上面によって上記下部治具部の上記第2の底面部との間に上記鍛造試料を第1の圧縮軸方向に圧縮加工し、
次に上記上部治具部を上記下部治具部から離れる方向に移動させた後上記上部治具部を上記案内凹所から引き抜いた状態において、上記鍛造試料を上記案内凹所から外部に取り出して入れ直すことにより当該鍛造試料を上記第1の圧縮軸方向とは異なる第2の圧縮軸方向に圧縮加工できるようにする
ことを特徴とする多軸鍛造用圧縮治具。

【請求項4】
上記案内凹所は、横断面がほぼ多角形形状になるように形成されると共に、上記第2の底面部は上記多角形形状の突出角部の方向に行くに従って深くなるように傾斜することにより、上記案内凹所に入れられる上記鍛造試料を上記突出角部の位置に位置決めし易くする
ことを特徴とする請求項3に記載の多軸鍛造用圧縮治具。

発明の名称 量子ドットの形成方法
技術分野 ナノテクノロジー
出願番号 特願2004-262638
概要

【特許請求の範囲】

【請求項1】
GaAs基板の表面に、GaAsバッファ層を成長して形成し、
前記GaAsバッファ層の表面または前記GaAsバッファ層の上層に、GaSbxAs1-x(x=1)層を0.24~1.52ML厚に成長して形成し、
前記GaSbxAs1-x(x=1)層の表面に、InAs量子ドットを成長して自己形成する
ことを特徴とする量子ドットの形成方法。

【請求項2】
前記GaSbxAs1-x(x=1)層は、As-Sb交換反応によって形成されることを特徴とする請求項1に記載の量子ドットの形成方法。

【請求項3】
前記InAs量子ドットは、1.1×1011cm-2以上のドット密度で自己形成されることを特徴とする請求項1に記載の量子ドットの形成方法。

【請求項4】
前記InAs量子ドットの自己形成ステップにおいて、コアレッセンスの発生が抑制されることを特徴とする請求項1に記載の量子ドットの形成方法。

【請求項5】
前記InAs量子ドットは、その成長初期において、細線状の2次元島が形成されることを特徴とする請求項1に記載の量子ドットの形成方法。

【請求項6】
GaAs基板の表面に、GaAsバッファ層を成長して形成し、
前記GaAsバッファ層の表面に、GaAsSb混晶バッファ層を成長して形成し、
前記GaAsSb混晶バッファ層上にGaAs層を成長して形成し、
前記GaAs層の表面にInAs量子ドットを、前記基板面内の所定の方向に、正方格子状に自己配列させて形成することを特徴とする量子ドットの形成方法。

【請求項7】
前記InAs量子ドットは、(001)基板面内上の<010>方向に沿って正方格子状に配列することを特徴とする請求項6に記載の量子ドットの形成方法。

【請求項8】
前記InAs量子ドットは、1×1011cm-2以上のドット密度で正方格子状に自己配列することを特徴とする請求項6に記載の量子ドットの形成方法。

【請求項9】
前記GaAsSb混晶バッファ層を、As4/Sb4 照射フラックス比3~9で形成することを特徴とする請求項6に記載の量子ドットの形成方法。

【請求項10】
GaAs基板と、
前記GaAs基板上の活性層と、
前記活性層に電流を注入する電極と
を備え、前記活性層は、
0.24~1.52ML厚のGaSb層と、
前記GaSb層の表面に成長したInAs量子ドットと、
前記InAs量子ドットを埋め込むGaAs埋め込み層と、
を含み、前記InAs量子ドットは、1.1×1011cm-2以上の密度で配置されることを特徴とする量子ドットレーザ。