株式会社キャンパスクリエイト

お客様の課題解決を
産学官連携・オープンイノベーションで実践する広域TLO

TEL 042-490-5734

(調布オフィス)
〒182-8585 東京都調布市調布ヶ丘1-5-1
国立大学法人電気通信大学産学官連携センター内

おもてなし規格認証2019 KAIKA Awards 特選紹介事例を受賞

開放特許情報

ライセンス可能な特許情報を掲載しています。

特許検索

技術分野を選択
キーワードを入力

特許情報

発明の名称 ドハティ増幅回路
技術分野 IT
出願番号 特願2008-2603
概要

【特許請求の範囲】

【請求項1】
互いに位相が逆の1対の信号がそれぞれに入力される第1及び第2ノードと、
キャリア増幅器と、
前記キャリア増幅器の入力と前記第1ノードとの間に接続された第1伝送線路と、
前記第2ノードに入力が接続されたピーク増幅器と、
伝送線路バランと、
第2伝送線路
とを備え、
前記伝送線路バランは、
負荷が接続される第1及び第2非平衡ポートと、
第1及び第2平衡ポートと、
前記第1非平衡ポートと前記第1平衡ポートの間に接続された、電気長が4分の1波長である第1バラン内伝送線路と、
前記第2非平衡ポートと前記第2平衡ポートの間に接続された、電気長が4分の1波長である第2バラン内伝送線路
とを含み、
前記第1平衡ポートが、前記キャリア増幅器の出力に接続され、
前記第2平衡ポートが、前記第2伝送線路を介して前記ピーク増幅器の出力に接続され、
前記第1伝送線路と前記第2伝送線路の電気長は、前記第1平衡ポートに入力される信号と前記第2平衡ポートに入力される信号とが、互いに位相が反転した1対の平衡信号を構成するように決定され、
前記キャリア増幅器と前記ピーク増幅器の出力インピーダンスが、前記第1及び第2非平衡ポートに接続される前記負荷のインピーダンスの2分の1である
ドハティ増幅回路。

【請求項2】
請求項1に記載のドハティ増幅回路であって、
前記第1伝送線路及び前記第2伝送線路の電気長が、4分の1波長である
ドハティ増幅回路。

【請求項3】
請求項1に記載のドハティ増幅回路であって、
前記第2伝送線路の電気長は、前記ピーク増幅器が動作していないときに前記第2平衡ポートから前記ピーク増幅器の出力を見たインピーダンスが最小であるように調節されて
いる
ドハティ増幅回路。

【請求項4】
請求項1に記載のドハティ増幅回路であって、
更に、
前記第1ノードと前記キャリア増幅器の入力の間に、前記第1伝送線路に直列に接続された第3伝送線路と、
前記ピーク増幅器の出力と前記第2平衡ポートの間に、前記第2伝送線路に直列に接続され、前記第3伝送線路と同一の電気長を有する第4伝送線路
とを具備し、
前記第1伝送線路及び前記第2伝送線路の電気長が4分の1波長であり、
前記第4伝送線路の電気長は、前記ピーク増幅器が動作していないときに前記第2平衡ポートから前記ピーク増幅器の出力を見たインピーダンスが最小であるように調節されて
いる
ドハティ増幅回路。

【請求項5】
請求項1乃至請求項4のいずれかに記載のドハティ増幅回路であって、
更に、
前記キャリア増幅器の出力と前記第1平衡ポートとの間に接続された第5伝送線路と、
前記第2ノードと前記ピーク増幅器の入力との間に接続された、前記第5伝送線路と同一の電気長を有する第6伝送線路
とを具備する
ドハティ増幅回路。

【請求項6】
請求項1乃至請求項5のいずれかに記載のドハティ増幅回路であって
更に、
信号源から受け取った入力信号から前記1対の信号を生成する分配回路を備える
ドハティ増幅回路。

【請求項7】
請求項6に記載のドハティ増幅回路であって、
前記分配回路が、バラン、ラットレースリング、180度方向性結合器、又は、90度方向性結合器と1/4波長伝送線路の組み合わせのいずれかで構成された
ドハティ増幅回路。

発明の名称 強磁性ドットのコア反転方法、コアの向き制御方法、強磁性ドットのコア利用素子
技術分野 IT, ナノテクノロジー
出願番号 特願2007-241748
概要

【要約】

【課題】
円盤形状の強磁性体から成り、磁気構造が磁気渦構造を取る強磁性ドットにおけるコアの向きを反転させる簡便な方法を提供する。

【解決手段】
強磁性ドットの径方向に、該強磁性ドットの共振周波数の周期の半分と略等しい長さのパルス電流を複数回供給する。望ましくは、各パルス電流を強磁性ドットの径方向の両端部から交互に供給すると良い。パルス電流を複数回を供給することにより、比較的低い電流密度でコアを反転させることができるから、素子の破損を防止することができる。電流密度、パルス長を適宜に決定しておくことによって、コアの向きを一回だけ反転させることができる。

【特許請求の範囲】

【請求項1】
円盤形状の強磁性体から成り磁気構造が磁気渦構造を取る強磁性ドットのコアの向きを反転させる方法であって、
強磁性ドットの径方向に該強磁性ドットの共振周波数の周期の半分と略等しい長さのパルス電流を複数回供給することにより、強磁性ドットのコアの向きを反転させる
ことを特徴とする強磁性ドットのコア反転方法。

【請求項2】
前記各パルス電流を、前記強磁性ドットの径方向の両端部から交互に供給する
ことを特徴とする請求項1に記載のコア反転方法。

【請求項3】
円盤形状の強磁性体から成り磁気構造が磁気渦構造を取る強磁性ドットにおけるコアの向きを制御する方法であって、
該強磁性ドットの周囲において該周囲を略三等分する各位置に、第一電流供給部、第二電流供給部、及び接地部を設けておき、
該第一電流供給部より該強磁性ドットの共振周波数と略等しい周波数の交流電流を供給するとともに、
該第二電流供給部より該強磁性ドットの共振周波数と略等しい周波数を有し、該第一電流供給部から供給される交流電流に対して位相が120°又は-120°ずれた交流電流を供給することにより、該位相のずれに応じた方向にコアの向きを決定する
ことを特徴とする、強磁性ドットのコアの向き制御方法。

【請求項4】
円盤形状の強磁性体から成り磁気構造が磁気渦構造を取る強磁性ドットと、
該強磁性ドットの径方向に、該強磁性ドットの共振周波数の周期の半分と略等しい長さのパルス電流を複数回供給するパルス電流供給部と、
を備えることを特徴とする強磁性ドットのコア利用素子。

【請求項5】
円盤形状の強磁性体から成り磁気構造が磁気渦構造を取る強磁性ドットと、
該強磁性ドットの周囲を三等分する各位置に、
該強磁性ドットの共振周波数と略等しい周波数の交流電流を供給する第一電流供給部と、
該強磁性ドットの共振周波数と等しい周波数を有し、該第一電流供給部から供給される交流電流に対して位相が120°又は-120°ずれた交流電流を供給する第二電流供給部と、
接地部と、
を備えることを特徴とする強磁性ドットのコア利用素子。

【請求項6】
前記強磁性ドットが、平面形状が直径50μm以下の略円形であって厚みが1μm以下である円盤形状であることを特徴とする請求項4又は5に記載の強磁性ドットのコア利用素子。

【請求項7】
コアの向きを読み出す読出し部を更に備えたことを特徴とする請求項4~6のいずれかに記載の強磁性ドットのコア利用素子。

【請求項8】
請求項7に記載の強磁性ドットのコア利用素子を複数並べたことを特徴とする情報記録素子。

発明の名称 線形マルチポートのシステムパラメータの測定方法及び装置、ベクトルネットワークアナライザを用いた測定方法並びにプログラム
技術分野 IT
出願番号 特願2007-236139
概要

【特許請求の範囲】

【請求項1】
5ポート接合や6ポート接合などの2つの入力ポートと3つ以上の出力ポートを備える線形回路であって各出力ポートから出てくる波が前記2つの入力ポートに入る波の線形式で表される線形回路(以下、「線形マルチポート」と記す)に関して、前記線形マルチポートに固有の値であるシステムパラメータを測定する方法であって、
互いに位相が異なる第1の波、第2の波及び第3の波を用意し、前記線形マルチポートの一方の入力ポート1に予め定められた波(以下、「基準波a1」と記す)を入れ、他方の入力ポート2に前記第1の波、第2の波又は第3の波のいずれか(以下、「測定波a2」と記す)を入れたときの、前記基準波a1に対する前記第1の波、第2の波、第3の波の複素振幅比をそれぞれW0、W1、W2(ただし、W=a2/a1)に設定する位相設定ステップと、
前記線形マルチポートの一方の入力ポート1に前記基準波a1を入れるとともに、他方の入力ポート2を整合終端する基準電力測定準備ステップと、
前記線形マルチポートの各出力ポートの電力を測定し、それらを基準電力P3r、P4r、P5r・・・とする基準電力測定ステップと、
前記他方の入力ポート2の整合終端を外し、前記他方の入力ポート2に前記第1の波、第2の波、第3の波を順次加え、それぞれの波に対応する各出力ポートの電力{P30、P40、P50・・・}{P31、P41、P51・・・}{P32、P42、P52・・・}を順次測定する電力測定ステップと、
前記第1の波、第2の波、第3の波に対応して測定された前記各出力ポートの電力{P30、P40、P50・・・}{P31、P41、P51・・・}{P32、P42、P52・・・}を前記基準電力P3r、P4r、P5r・・・で正規化する正規化ステップと、
正規化された前記各出力ポートの電力、及び、前記複素振幅比W0、W1、W2に基づき前記システムパラメータkhを計算するか、又は、正規化された前記各出力ポートの電力、前記第1の波と第2の波の位相差ψ01及び前記第1の波と第3の波の位相差ψ02に基づき前記システムパラメータkhの比hkiを計算することのいずれかを行うシステムパラメータ計算ステップと、を備える線形マルチポートのシステムパラメータ測定方法。

【請求項2】
線形マルチポートに固有の値であるシステムパラメータを測定する方法であって、
前記線形マルチポートの一方の入力ポート1に基準波a1を入れるとともに、他方の入力ポート2を整合終端する基準電力測定準備ステップと、
前記線形マルチポートの各出力ポートの電力を測定し、それらを基準電力P3r、P4r、P5r・・・とする基準電力測定ステップと、
前記他方の入力ポート2の整合終端を外し、前記他方の入力ポート2にショートの標準器を接続し、そのときの第1の反射波に対する各出力ポートの電力{P30、P40、P50・・・}を測定するとともに、測定された当該電力を前記基準電力P3r、P4r、P5r・・・で正規化する第1電力測定正規化ステップと、
前記他方の入力ポート2に第1固定移相器を接続し、さらにこれにショートの標準器を接続し、そのときの第2の反射波に対する各出力ポートの電力{P31、P41、P51・・・}を測定するとともに、測定された当該電力を前記基準電力P3r、P4r、P5r・・・で正規化する第2電力測定正規化ステップと、
前記他方の入力ポート2に第1固定移相器及びこれに直列に接続された第2固定移相器を接続し、さらにこれにショートの標準器を接続し、そのときの第3の反射波に対する各出力ポートの電力{P32、P42、P52・・・}を測定するとともに、測定された当該電力を前記基準電力P3r、P4r、P5r・・・で正規化する第3電力測定正規化ステップと、
正規化された前記各出力ポートの電力、及び、前記第1の反射波、第2の反射波、第3の反射波の反射係数Γ0、Γ1、Γ2に基づき前記システムパラメータkhを計算するか、又は、正規化された前記各出力ポートの電力、前記第1の反射波と前記第2の反射波の位相差ψ01及び前記第1の反射波と前記第3の反射波の位相差ψ02に基づき前記システムパラメータkhの比hkiを計算することのいずれかを行うシステムパラメータ計算ステップと、を備える線形マルチポートのシステムパラメータ測定方法。

【請求項3】
前記システムパラメータ計算ステップは、下記の式(19)により前記システムパラメータkhを計算することを特徴とする請求項1記載の線形マルチポートのシステムパラメータ測定方法。

(以下、詳細は特許公報をご参照ください)

発明の名称 アナターゼ型酸化チタン微粒子及びアナターゼ型酸化チタン微粒子の製造方法
技術分野 環境/有機化学/無機化学
出願番号 特願2007-210787
概要

【特許請求の範囲】

【請求項1】
バンドギャップEgが、
3.87eV≦Eg≦4.13eV
であることを特徴とするアナターゼ型酸化チタン微粒子。

【請求項2】
液体中のルチル型酸化チタンからなる原料にパルスレーザー光を照射することにより生成されたことを特徴とする請求項1に記載のアナターゼ型酸化チタン微粒子。

【請求項3】
直径が20nm以下であることを特徴とする請求項1または請求項2のいずれか1項に記載のアナターゼ型酸化チタン微粒子。

【請求項4】
液体中に載置されたルチル型酸化チタン単結晶からなる原料にパルスレーザー光を照射する工程を備え、
前記原料に照射されるレーザーフルエンスfが、
f≧0.25J/cm2
であることを特徴とするアナターゼ型酸化チタン微粒子の製造方法。

【請求項5】
レーザーフルエンスfの大きさに基づいて生成されるアナターゼ型酸化チタン微粒子の量を調整することを特徴とする請求項4に記載のアナターゼ型酸化チタン微粒子の製造方法。

【請求項6】
log10Y=a×f+b
a,b:定数
に基づいて、パルスレーザー光1パルスで生成されるチタンイオンの量Yを制御することにより、アナターゼ型酸化チタン微粒子の量を調整することを特徴とする請求項5に記載のアナターゼ型酸化チタン微粒子の製造方法。

【請求項7】
原料と液体の液面との距離Dに基づいて生成されるアナターゼ型酸化チタン微粒子の量を調整することを特徴とする請求項4に記載のアナターゼ型酸化チタン微粒子の製造方法。
【請求項8】
log10X=c×D+A
c:定数
A:誤差
に基づいて、単位レーザーフルエンス(=1J/cm2)当たりで生成されるチタンイオンの量Xを制御することにより、アナターゼ型酸化チタン微粒子の量を調整することを特徴とする請求項7に記載のアナターゼ型酸化チタン微粒子の製造方法。

【請求項9】
前記液体は、蒸留水であることを特徴とする請求項4~請求項8のいずれか1項に記載のアナターゼ型酸化チタン微粒子の製造方法。

【請求項10】
前記液体は、アンモニア水であることを特徴とする請求項4~請求項8のいずれか1項に記載のアナターゼ型酸化チタン微粒子の製造方法。

発明の名称 プログラムの維持・改良システム、及びコンピュータ読み取り可能なプログラム
技術分野 IT
出願番号 特願2007-209617
概要

【要約】

【課題】プログラムをより安定して維持・改良すること。

【解決手段】対象プログラムを実行する実行手段(20)と、所定の記憶手段に記憶された削除待ち行列に従って対象プログラムを削除する削除手段(22)と、実行終了した対象プログラムについて、数値化された実行結果が目標値と合致した場合に最大値を評価値として出力すると共に数値化された実行結果が目標値から離れるに従って小さくなる値を評価値として出力する傾向を有する評価関数によって、評価を行なう評価手段(24)と、評価手段による評価値に基づいて、対象プログラムの前記削除待ち行列における削除順位を変更する削除順位変更手段(26)と、評価手段による評価値に基づいて、対象プログラムを複製する複製手段(28)と、を備えるプログラムの維持・改良システム(1)。

【特許請求の範囲】

【請求項1】
対象プログラムを実行する実行手段と、
所定の記憶手段に記憶された削除待ち行列に従って前記対象プログラムを削除する削除手段と、
実行終了した前記対象プログラムについて、数値化された実行結果が目標値と合致した場合に最大値を評価値として出力すると共に数値化された実行結果が目標値から離れるに従って小さくなる値を評価値として出力する傾向を有する評価関数によって、評価を行なう評価手段と、
前記評価手段による評価値に基づいて、前記対象プログラムの前記削除待ち行列における削除順位を変更する削除順位変更手段と、
前記評価手段による評価値に基づいて、前記対象プログラムを複製する複製手段と、
を備えるプログラムの維持・改良システム。

【請求項2】
前記削除順位変更手段は、前記評価手段による評価値が前記最大値である場合に、該評価された対象プログラムの前記削除待ち行列における削除順位が下がるように、前記対象プログラムの前記削除待ち行列における削除順位を変更する手段である、請求項1に記載のプログラムの維持・改良システム。

【請求項3】
前記対象プログラムに変異を生じさせる変異処理手段を備える、請求項1又は2に記載のプログラムの維持・改良システム。

【請求項4】
前記評価関数の設定又は変更に関する外部からの入力を受け付ける評価関数入力受付手段を備える、請求項1ないし3のいずれか1項に記載のプログラムの維持・改良システム。

【請求項5】
前記評価手段の評価値を記憶する評価値記憶手段を備え、
前記複製手段は、前記評価値記憶手段に記憶された評価値の履歴に基づいて、前記対象プログラムを複製する手段である、請求項1ないし4のいずれか1項に記載のプログラムの維持・改良システム。

【請求項6】
前記複製手段は、前記評価値記憶手段に記憶された評価値の累計値に基づく値が所定の複製基準値を超えた場合に対象プログラムを複製する手段である、請求項5に記載のプログラムの維持・改良システム。

【請求項7】
前記評価関数は、最低値として累計可能な値を出力する関数である、請求項6に記載のプログラムの維持・改良システム。

【請求項8】
宇宙空間で使用されることを特徴とする、請求項1ないし7のいずれか1項に記載のプログラムの維持・改良システム。

【請求項9】
前記変異処理手段は、自己の作動に依らない対象プログラムの変異発生率に応じて前記対象プログラムに変異を生じさせる確率を変更する手段である、請求項3、又は請求項3に係る請求項4ないし8のいずれか1項に記載のプログラムの維持・改良システム。

【請求項10】
コンピュータを、請求項1ないし9のいずれか1項に記載のプログラムの維持・改良システムとして機能させるための、コンピュータ読み取り可能なプログラム