発明の名称 | 物体検出装置、物体検出方法、物体検出プログラムおよび物体検出方法 |
---|---|
技術分野 | IT |
出願日 | 平成29年4月26日 |
出願番号 | 特願2017-86992 |
公開番号 | 特開2018-185655 |
登録番号 | |
出願人 | 国立大学法人電気通信大学 |
発明者 |
橋本 直己
小林 大祐 |
特許公報 | PDFのダウンロードはこちらから |
概要 | 【要約】 【課題】照明変化や対象物体の位置姿勢の変動や自己遮蔽に対する頑健さと位置姿勢の推定の精度の向上とを同時に満たすことができる手法を提供する。 【解決手段】検出の対象物体の様々な姿勢の画像から抽出したパッチ画像の特徴量に基づいて学習され、前記対象物体を撮影して得た入力画像のパッチ画像をいずれかの姿勢クラスに分類する第1の識別器と、前記対象物体の様々な姿勢の画像から抽出したパッチ画像の特徴量に基づいて学習され、姿勢クラスが推定された入力画像のパッチ画像をいずれかの姿勢パラメータに分類する第2の識別器とを備える。 【特許請求の範囲】 【請求項1】 検出の対象物体の様々な姿勢の画像から抽出したパッチ画像の特徴量に基づいて学習され、前記対象物体を撮影して得た入力画像のパッチ画像をいずれかの姿勢クラスに分類する第1の識別器と、前記対象物体の様々な姿勢の画像から抽出したパッチ画像の特徴量に基づいて学習され、姿勢クラスが推定された入力画像のパッチ画像をいずれかの姿勢パラメータに分類する第2の識別器とを備えたことを特徴とする物体検出装置。 【請求項2】 前記入力画像を赤外線カメラから入力することを特徴とする請求項1に記載の物体検出装置。 【請求項3】 前記特徴量として累積勾配方向特徴量または量子化勾配方向特徴量を用いることを特徴とする請求項1または2に記載の物体検出装置。 【請求項4】 前記第1の識別器および前記第2の識別器は、前記入力画像の個々のパッチ画像による分類結果の総合的な投票結果に基づいて分類を行うことを特徴とする請求項1乃至3のいずれか一項に記載の物体検出装置。 【請求項5】 前記第1の識別器および前記第2の識別器は、前記第1の識別器および前記第2の識別器を構成する決定木をRandom Ferns形式で構成することを特徴とする請求項1乃至4のいずれか一項に記載の物体検出装置。 【請求項6】 前記第2の識別器により推定された姿勢パラメータを初期値として、前記入力画像により前記対象物体の位置姿勢を追跡する位置姿勢追跡部と、前記対象物体の過去の位置姿勢の変化から所定の遅延後の前記対象物体の位置姿勢を予測する動き予測部とを備えたことを特徴とする請求項1乃至5のいずれか一項に記載の物体検出装置。 【請求項7】 前記位置姿勢追跡部は、前記初期値における前記対象物体のCADモデル上のエッジ点と前記入力画像から抽出した前記対象物体のエッジ点との誤差を最小化するように位置姿勢に補正を加えることを特徴とする請求項6に記載の物体検出装置。 【請求項8】 対象物体の姿勢パラメータの初期値を入力し、前記対象物体を撮影して得た入力画像により前記対象物体の位置姿勢を追跡する位置姿勢追跡部と、前記対象物体の過去の位置姿勢の変化から所定の遅延後の前記対象物体の位置姿勢を予測する動き予測部とを備えたことを特徴とする物体検出装置。 【請求項9】 検出の対象物体の様々な姿勢の画像から抽出したパッチ画像の特徴量に基づいて学習され、前記対象物体を撮影して得た入力画像のパッチ画像をいずれかの姿勢クラスに分類する第1の識別手順と、 前記対象物体の様々な姿勢の画像から抽出したパッチ画像の特徴量に基づいて学習され、姿勢クラスが推定された入力画像のパッチ画像をいずれかの姿勢パラメータに分類する第2の識別手順とをコンピュータが実行することを特徴とする物体検出方法。 【請求項10】 対象物体の姿勢パラメータの初期値を入力し、前記対象物体を撮影して得た入力画像により前記対象物体の位置姿勢を追跡する位置姿勢追跡手順と、 前記対象物体の過去の位置姿勢の変化から所定の遅延後の前記対象物体の位置姿勢を予測する動き予測手順とをコンピュータが実行することを特徴とする物体検出方法。 【請求項11】 検出の対象物体の様々な姿勢の画像から抽出したパッチ画像の特徴量に基づいて学習され、前記対象物体を撮影して得た入力画像のパッチ画像をいずれかの姿勢クラスに分類する第1の識別手順と、前記対象物体の様々な姿勢の画像から抽出したパッチ画像の特徴量に基づいて学習され、姿勢クラスが推定された入力画像のパッチ画像をいずれかの姿勢パラメータに分類する第2の識別手順とをコンピュータに実行させることを特徴とする物体検出プログラム。 (以下省略) |
本特許の活用に関心がある方はコチラよりお問合せください。